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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. In the problem of secure multi-party sampling,
n parties wish to securely sample an n-variate joint distribution,
with each party receiving a sample of one the correlated variables.
The objective is to correctly produces the samples using a
distributed message passing protocol, while maintaining privacy
against a coalition of passively cheating parties. In the two-
party case, we fully characterize the joint distributions that
can be securely sampled under perfect correctness and privacy
requirements as well as under weakened correctness and privacy
requirements. Furthermore, we show that the distributions that
can be securely sampled can be produced with a protocol that
only uses one round of unidirectional communication. For the n-
party case, any distribution can be securely sampled with privacy
against a strict minority coalition, due to well-known results in
secure multi-party computation. However, when privacy against a
majority coalition is required, not all distributions can be securely
sampled. We give necessary conditions and sufficient conditions
for distributions that can be securely sampled. However, the exact
characterization of the distributions that can be securely sampled
remains open.

Index Terms—secure multi-party computation, secure sam-
pling, unconditional security, common information

I. INTRODUCTION

An important subclass of secure multi-party computation is
the problem of secure multi-party sampling. In this problem,
n parties wish to securely sample a set of n jointly distributed
random variables, with each party uniquely obtaining one of
these n variables. The objective is to correctly realize the
desired joint distribution while ensuring that any coalition
of up to c parties does not learn anything more about the
other parties’ samples than what can be inferred from the
coalition’s set of samples. This notion of privacy is formulated
in an information theoretic sense, requiring unconditional
security against parties with unbounded computational power.
In order to achieve this objective, the parties execute a
distributed protocol, in which they are allowed unlimited
noiseless communication over multiple interactive rounds. The
parties execute this protocol “from scratch”, meaning that,
while they can generate and utilize an unlimited amount of
local independent randomness, they do not have access to any
initial “setup” of correlated randomness. We assume that the
parties are “semi-honest”, that is, they will correctly execute
the protocol and only passively attempt to extract information
about other parties’ samples.

In this work, we present results toward the characteriza-

tion of the region of joint distributions that can be securely
sampled. Analogously to the work of [1], which characterizes
the boolean-valued functions that can be securely computed
from scratch, we aim to characterize the joint distributions
that can be securely sampled from scratch. Outer bounds for
secure sampling also have implications for the outer bounds
for specific secure multi-party computation problems (see [2]).
The characterization of these regions address the question of
feasibility. The questions of protocol efficiency and complexity
are not the primary focus of this work, although to demonstrate
the feasibility of some distributions, we construct protocols
that use only one round of unidirectional communication.

For the two-party case, we fully characterize the region of
distributions that can be securely sampled. We show that a
pair of random variables can be securely sampled with perfect
correctness and perfect privacy if, and only if, the common
information of these variables is equal to their mutual infor-
mation. Weakening the correctness or privacy requirements,
increases this region corresponding to the degree of weaken-
ing. Furthermore, these distributions can be securely sampled
by a protocol that uses only one round of unidirectional
communication.

In the n-party case, the secure computability of any function
(see [3] and [4]) with perfect privacy against coalitions of size
up to c < n/2 implies that any n-variate joint distribution can
be securely sampled with ε-correctness (for any ε > 0) and
perfect privacy against coalitions of size up to c < n/2. The
parties can generate shares of a private common randomness
and then compute the desired samples as a secure function
of that common randomness. However, this technique is not
applicable when privacy is required against coalitions of size
c ≥ n/2. For the regime of c ≥ n/2, many distributions cannot
be securely sampled and we present necessary conditions and
sufficient conditions for distributions that can be securely
sampled.

The problem of secure two-party sampling was first intro-
duced in the specific form of “mental poker” in [5]. In the
mental poker problem, Alice and Bob wish to sample random
variables that simulate the act of randomly drawing cards from
a shared deck, while ensuring that their drawn cards remain
private from the other party. The impossibility of this task
when unconditional security is required was proven and a
cryptographic solution was proposed in [5].

The recent work of [2] and [6] has considered the general



secure two-party sampling problem, with the modification that
the parties have access to a “setup” of correlated random
variables in order to assist them in generating the desired
variables, and requiring perfect correctness and perfect privacy.
Monotones for the secure two-party sampling problem, which
are information measures that can only decrease from the
measurement of the setup to the measurement of the output
of the protocol, were presented in [2] and used as a technique
for developing outer bounds. The notion of monotones was
extended to monotone regions in [6], providing a tighter outer
bound technique for the general problem. The outer bound
of [2], when specialized to the scenario of secure sampling
from scratch (i.e., using an independent setup), matches the
two-variate distribution region that we characterize for perfect
correctness and perfect privacy. Hence in this scenario, we
have shown that their outer bound is tight.

II. PROBLEM FORMULATION

The desired distribution is an n-variate joint distribution
PX1,...,Xn

over the finite alphabets X1×. . .×Xn. The objective
is to construct an n-party protocol that correctly and privately
produce samples (X̂1, . . . , X̂n) ∈ X1× . . .×Xn, with party i
generating X̂i.

A protocol may involve multiple rounds of error-free,
interactive communication, with local random computation
performed between rounds. We describe a very general family
of permissible protocols to allow for stronger converse state-
ments.

At the beginning of a protocol, each party i generates an
arbitrary, independent random seed Ri, where R1, . . . , Rn ∼
PR1,...,Rn

=
∏n

i=1 PRi
.

Then, the parties interact for t rounds of communication,
where in each round k ∈ {1, . . . , t}, a message is sent between
each pair of parties i, j ∈ {1, . . . , n}, i 6= j, produced as a
function of the sender’s random seed and all messages received
by the sender in previous rounds,

Mk(i, j) = fi,j,k(Ri,M
k−1(∗, i)),

where

Mk−1(∗, i) := {M1(j, i), . . . ,Mk−1(j, i)}i 6=j

denotes every message received by party i prior to round
k. Note that during a round, messages may even be sent
simultaneously in both directions between a particular pair
of parties. Also, any of these messages may be null, in order
to capture simpler patterns of communication. In a particular
round, if between each pair of parties, at least one of the
messages sent in either direction is null, then we say that round
uses unidirectional communication.

After t rounds of interaction, each party produces its sample
as a function of its random seed and its received messages,

X̂i = gi(Ri,M
t(∗, i)).

Note that this computation can also make use of all of the
messages sent by the party since the sent messages are only
a function of the random seed and received messages.

From here on, we will use the following shorthand notation
for messages over all t rounds. The set of all messages received
by party i is denoted by

Mi := M t(∗, i),

and the set of all messages exchanged over all t rounds is
denoted by

M = M1, . . . ,Mn.

Correctness: A protocol is ε-correct (for ε ≥ 0) if the
distribution of the produced samples is close to the desired
distribution, that is,

d(PX̂1,...,X̂n
, PX1,...,Xn

) ≤ ε,

where d(PU , PV ) is the variational distance between distribu-
tions PU and PV on the same alphabet U :

d(PU , PV ) =
1
2

∑
u∈U
|PU (u)− PV (u)|

=
1
2
‖PU − PV ‖1.

Privacy: A protocol is (δ, c)-private (for δ ≥ 0 and c ∈
{1, . . . , n− 1}), if∑

T⊂{1,...,n}:|T |≤c

I
(
{Ri,Mi}i∈T ; {X̂i}i/∈T |{X̂i}i∈T

)
≤ δ.

In the two-party case (n = 2), only coalitions of size c = 1
are interesting, hence we simply say δ-private.

We say that an n-variate distribution PX1,...,Xn
can be

securely sampled with ε-correctness and (δ, c)-privacy if and
only if there exists an n-party protocol that is both ε-correct
and (δ, c)-private. The qualifiers of perfect correctness, perfect
privacy, or perfect security respectively denote the cases when
ε = 0, δ = 0, or both.

III. MAIN RESULTS

The structure of the protocol implies the following property
on the samples produced and the messages exchanged.

Lemma 1 For any distributed protocol, the samples produced
are independent conditioned on all of the messages exchanged,
that is,

PX̂1,...,X̂n|M =
n∏

i=1

PX̂i|M

Proof: Consider the distribution of (X̂1, . . . , X̂n,M), which
can be expressed as

PX̂n,M (xn,m) =
∑
rn

PX̂n,M,Rn(xn,m, rn)

=
∑
rn

PRn(rn)PX̂n,M |Rn(xn,m|rn)

=
∑
rn

PRn(rn)ψ(xn,m, rn),



where ψ(xn,m, rn) is equal to one if for all k ∈ {1, . . . , t}
and i, j ∈ {1, . . . , n} with i 6= j,

mk(i, j) = fi,j,k(ri,mk−1(∗, i)),
xi = gi(ri,mt(∗, i)),

and equal to zero otherwise. This indicator function can be
factorized as

ψ(xn,m, rn) =
n∏

i=1

ψi(xi,m, ri),

where ψi(xi,m, ri) is equal to one if for all k ∈ {1, . . . , t}
and j ∈ {1, . . . , n} with i 6= j,

mk(i, j) = fi,j,k(ri,mk−1(∗, i)),
xi = gi(ri,mt(∗, i)),

and equal to zero otherwise. Thus, PX̂n,M (xn,m) can be
factorized as

PX̂n,M (xn,m) =
∑
rn

PRn(rn)ψ(xn,m, rn)

=
n∏

i=1

φi(xi,m),

where
φi(xi,m) =

∑
ri

PRi(ri)ψi(xi,m, ri).

Hence, given this factorization, we have that X̂1, . . . , X̂n are
independent given M .

A. Common Information

The notion of the “common information” between a pair of
random variables has been widely explored in the literature
(see for example [7], [8], [9], [10]). Several definitions,
each with an operational significance to a coding problem,
have been characterized, including the Gács-Körner common
information [7] and the Wyner common information [9].

The Wyner common information [9] plays a significant role
in the characterization of the region of two-variate distributions
that can be securely sampled, and is defined by

W (X1;X2) := min
Y :I(X1;X2|Y )=0

I(X1, X2;Y ),

where the minimum can be obtained by Y ∈ Y , with |Y| ≤
|X1|·|X2| [9]. The Wyner common information is always larger
than the mutual informaion [9],

I(X1;X2) ≤W (X1;X2),

and the following Lemma characterizes when Wyner common
information is within δ of the mutual information.

Lemma 2 For all δ ≥ 0, W (X1;X2) ≤ I(X1;X2) + δ if,
and only if, there exists Y such that I(X1;X2|Y ) = 0 and
I(X1;Y |X2)+I(X2;Y |X1) ≤ δ. For the “only if” direction,
one can find Y ∈ Y , with |Y| ≤ |X1| · |X2|.

Proof: This follows from the definition of W (X1;X2), the
following identity

I(X1, X2;Y )− I(X1;X2)
= I(X1;Y |X2) + I(X2;Y |X1)− I(X1;X2|Y ),

and the cardinality bound on the optimization.

B. The Two-Party Case

In the two-party case, we fully characterize the region of
distributions that can be securely sampled with ε-correctness
and δ-privacy.

Theorem 1 A two-variate distribution PX1,X2 can be securely
sampled with ε-correctness and δ-privacy if, and only if, there
exists PX̂1,X̂2

such that d(PX̂1,X̂2
, PX1,X2) ≤ ε and

W (X̂1; X̂2) ≤ I(X̂1; X̂2) + δ.

Furthermore, if PX1,X2 can be sampled with ε-correctness and
δ-privacy, then it can be done with a protocol that uses only
one round of unidirectional communication.

Proof of the “only if” part: An ε-correct and δ-private
protocol samples PX̂1,X̂2

such that d(PX̂1,X̂2
, PX1,X2) ≤ ε

and

I(R1,M1; X̂2|X̂1) + I(R2,M2; X̂1|X̂2) ≤ δ.

We have

I(M ; X̂1|X̂2) + I(M ; X̂2|X̂1)

≤ I(R1,M ; X̂2|X̂1) + I(R2,M ; X̂1|X̂2)
(a)
= I(R1,M1; X̂2|X̂1) + I(R2,M2; X̂1|X̂2)
(b)

≤ δ,

where (a) holds because M2 is a function of (R1,M1), M1

is a function of (R2,M2), and M = (M1,M2), and (b)
follows from the assumption that the protocol is δ-private. By
Lemma 1, I(X̂1; X̂2|M) = 0. From Lemma 2, with Y = M ,
it follows that W (X1;X2) ≤ I(X1;X2) + δ.

Proof of the “if” part: If there exists PX̂1,X̂2
such that

W (X̂1; X̂2) ≤ I(X̂1; X̂2)+δ, then by Lemma 2, there exists a
Y ∈ Y , with |Y| ≤ |X1|·|X2|, such that I(X̂1; X̂2|Y ) = 0 and
I(X̂1;Y |X̂2) + I(X̂2;Y |X̂1) ≤ δ. We can design a protocol
that uses only one-round of unidirectional communication as
follows:

1) Party 1 generates R1 = (X̂1, Y ) ∼ PX̂1,Y .
2) In the single round of communication, party 1 sends the

message M1(1, 2) = Y to party 2, and party 2 does not
send a message, i.e., M1(2, 1) is null.

3) Party 1 outputs X̂1.
4) Party 2 independently generates R2 = {X̂2(y)}y∈Y ,

where X̂2(y) ∼ PX̂2|Y (·|y).
5) Party 2 outputs X̂2 = g2(R2, Y ) = X̂2(Y ).

Note that these last two steps result in (X̂2, Y ) ∼ PX̂2,Y . Since
also (X̂1, Y ) ∼ PX̂1,Y and I(X̂1; X̂2|Y ) = 0, we have that



(X̂1, X̂2, Y ) ∼ PX̂1,X̂2,Y . Hence, the protocol is ε-correct.
We now show that the protocol is also δ-private. We have

I(R1,M1; X̂2|X̂1)
(c)
= I(X̂1, Y ; X̂2|X̂1)
= I(X̂2;Y |X̂1),

where equality (c) is because R1 = (X̂1, Y ) and M1 is null.
We also have

I(R2,M2; X̂1|X̂2)
(d)
= I(R2, Y ; X̂1|X̂2)
= H(X̂1|X̂2)−H(X̂1|X̂2, R2, Y )
(e)
= H(X̂1|X̂2)−H(X̂1|R2, Y )
(f)
= H(X̂1|X̂2)−H(X̂1|Y )
(g)
= H(X̂1|X̂2)−H(X̂1|X̂2, Y )
= I(X̂1;Y |X̂2),

where (d) is because M2 = Y , (e) is because X̂2 is a
deterministic function of R2 and Y , (f) is because R2 is
independent of (X̂1, Y ), and (g) is because I(X̂1; X̂2|Y ) = 0,
which is a consequence of the assumptions of the “if” part of
the theorem. From this it follows that

I(R1,M1; X̂2|X̂1) + I(R2,M2; X̂1|X̂2)
= I(X̂2;Y |X̂1) + I(X̂1;Y |X̂2)
≤ δ.

Hence, the protocol is δ-private.
An immediate corollary of the above theorem is the char-

acterization for perfect security.

Corollary 1 A two-variate distribution PX1,X2 can be se-
curely sampled with perfect correctness and privacy (ε = δ =
0) if, and only if,

W (X1;X2) = I(X1;X2).

The outer bound of [2] applies for secure two-party sam-
pling with perfect security, but where the parties have access
to a correlated setup. Specializing this outer bound to an
independent setup corresponds to secure two-party sampling
from scratch and yields the necessary condition that PX1,X2

can be securely sampled with perfect security only if the Gács-
Körner common information (see [7]) between (X1, X2) is
equal to the mutual information, which happens if, and only
if, the Wyner common information is equal to the mutual
information (see [9] or [10]). Thus, our corollary implies that
the converse of [2] is tight for the scenario of secure two-party
sampling with perfect security from scratch.

C. The n-Party Case

In the n-party case, when privacy is only required against
a strict minority coalition (c < n/2), any distribution can
be securely sampled as a consequence of the universality of
secure multi-party computation with a passive coalition in the
strict minority [3].

Theorem 2 For any c < n/2 and ε > 0, any n-variate distri-
bution PX1,...,Xn

can by securely sampled with ε-correctness
and perfect (0, c)-privacy.

Proof: For any distribution PX1,...,Xn and any ε > 0, there
exist random variables (Z, X̂1, . . . , X̂n) where X̂i = hi(Z)
for deterministic functions hi and Z uniform over a sufficiently
large finite field, such that d(PX̂1,...,X̂n

, PX1,...,Xn
) ≤ ε.

Since c < n/2, the secure multi-party computation techniques
of [3] can be used to enable the parties to securely sample
(X̂1, . . . , X̂n). First, each party independently and uniformly
generates Zi and distributes shares of Zi to all of the parties
in the manner of [3]. By combining these shares, each party
obtains shares Z = Z1 + . . . + Zn, which is uniformly
distributed. Then, using the secure computation techniques
of [3], each party can securely compute X̂i = hi(Z) with
perfect privacy. Thus, the parties will have securely sampled
PX1,...,Xn

with ε-correctness and perfect (0, c)-privacy. Note
that the secure computation techniques of [3] are not appli-
cable to the general case when privacy is required against
coalitions of size c ≥ n/2. Also, although ε-correctness can
be obtained for any ε > 0, perfect correctness might be
impossible, since the procedure produces a joint distribution
with only rational probability masses.

In the n-party case, with privacy required against a coalition
of size c ≥ n/2, the exact characterization of the distributions
that can be securely sampled is not currently known. Necessary
conditions for a distribution to be securely sampled can be
derived from the fact that an n-party protocol, which is private
against coalitions size c ≥ n/2, can be transformed into a
secure two-party protocol. Thus, the converse for the two-party
case can be bootstrapped to produce an outer bound for the
n-party case.

Theorem 3 For c ≥ n/2, an n-variate distribution
PX1,...,Xn

can by securely sampled with ε-correctness and
(δ, c)-privacy only if there exists PX̂1,...,X̂n

such that
d(PX̂1,...,X̂n

, PX1,...,Xn) ≤ ε and for all T ⊂ {1, . . . , n}, such
that |T | ≤ c and |T̄ | ≤ c,

W (X̂T ; X̂T̄ ) ≤ I(X̂T ; X̂T̄ ) + δ,

where X̂T := {X̂i}i∈T and X̂T̄ := {X̂i}i∈T̄ .

Proof: An ε-correct and (δ, c)-private protocol samples
PX̂1,...,X̂n

such that d(PX̂1,...,X̂n
, PX1,...,Xn

) ≤ ε and∑
T⊂{1,...,n}:|T |≤c

I
(
{Ri,Mi}i∈T ; {X̂i}i/∈T |{X̂i}i∈T

)
≤ δ.

For any T ⊂ {1, . . . , n}, such that |T | ≤ c and |T̄ | ≤ c, this
protocol can be converted to a secure two-party protocol for
generating PXT ,XT̄

with ε-correctness and δ-privacy. Party 1
simulates the parties in T and party 2 simulates the parties
in T̄ , to produce X̂T = {X̂i}i∈T and X̂T̄ = {X̂i}i∈T̄ .
The parties generate the necessary seed randomness, R′1 =
{Ri}i∈T and R′2 = {Ri}i∈T̄ . The messages exchanged within
each group become local computations and the messages



exchanged between the groups is the actual communication be-
tween the two parties, M ′1 = {M1(j, i), . . . ,Mt(j, i)}i∈T,j∈T̄

and M ′2 = {M1(j, i), . . . ,Mt(j, i)}i∈T̄ ,j∈T . The two-
party protocol is ε-correct since d(PX̂T ,X̂T̄

, PXT ,XT̄
) =

d(PX̂1,...,X̂n
, PX1,...,Xn) ≤ ε. The two-party protocol is δ-

private since

I
(
R′1,M

′
1; X̂T̄ |X̂T

)
+ I
(
R′2,M

′
2; X̂T |X̂T̄

)
≤ I
(
{Ri,Mi}i∈T ; {X̂i}i/∈T |{X̂i}i∈T

)
+ I
(
{Ri,Mi}i∈T̄ ; {X̂i}i/∈T̄ |{X̂i}i∈T̄

)
≤

∑
S⊂{1,...,n}:|S|≤c

I
(
{Ri,Mi}i∈S ; {X̂i}i/∈S |{X̂i}i∈S

)
≤ δ,

due to the privacy of the n-party protocol.
Since PXT ,XT̄

can be sampled with ε-correctness and δ-
privacy,

W (X̂T ; X̂T̄ ) ≤ I(X̂T ; X̂T̄ ) + δ,

due to Theorem 1.
Sufficient conditions that enable a distribution to be securely

sampled are given in the following theorem.

Theorem 4 For any c ∈ {1, . . . , n − 1}, an n-variate
distribution PX1,...,Xn can by securely sampled with ε-
correctness and (δ, c)-privacy if there exists PX̂1,...,X̂n,Y such
that d(PX̂1,...,X̂n

, PX1,...,Xn
) ≤ ε,

PX̂1,...,X̂n|Y =
∏

PX̂i|Y ,

and ∑
T⊂{1,...,n}:|T |≤c

I
(
Y ; {X̂i}i/∈T |{X̂i}i∈T

)
≤ δ.

Furthermore, if the above conditions are satisfied then the
protocol need only use one round of unidirectional communi-
cation.

Proof: If the conditions of the theorem are satisfied then we
can construct the following protocol using only one round of
unidirectional communication:

1) Party 1 generates R1 = (X̂1, Y ) ∼ PX̂1,Y .
2) In the single round of communication, party 1 sends

message M1(1, i) = Y to every other party i ∈
{2, . . . , n}. All other messages are null.

3) Party 1 outputs X̂1.
4) For i ∈ {2, . . . , n}, party i independently generates

Ri = {X̂i(y)}y∈Y , where X̂i(y) ∼ PX̂2|Y (·|y).
5) Party i outputs X̂i = gi(Ri, Y ) = X̂i(Y ).

This protocol produces samples such that (X̂i, Y ) ∼
PX̂i,Y

for i ∈ {1, . . . , n}. Along with the given condi-
tion that X̂i are independent given Y , this implies that
(X̂1, . . . , X̂n) ∼ PX̂1,...,X̂n

. Thus, by the given condition that
d(PX̂1,...,X̂n

, PX1,...,Xn
) ≤ ε, the protocol is ε-correct.

Now we show the protocol is also (δ, c)-private, that is,∑
T⊂{1,...,n}:|T |≤c

I
(
{Ri,Mi}i∈T ; {X̂i}i/∈T |{X̂i}i∈T

)
≤ δ.

The terms in the summation satisfy

I
(
{Ri,Mi}i∈T ; {X̂i}i/∈T |{X̂i}i∈T

)
(a)
= I(RT , Y ; X̂T̄ |X̂T )

= H(X̂T̄ |X̂T )−H(X̂T̄ |X̂T , RT , Y )
(b)
= H(X̂T̄ |X̂T )−H(X̂T̄ |RT , Y )
(c)
= H(X̂T̄ |X̂T )−H(X̂T̄ |Y )
(d)
= H(X̂T̄ |X̂T )−H(X̂T̄ |Y, X̂T )

= I(Y ; X̂T̄ |X̂T ),

where (a) follows since Y is a function of R1 and Mi = Y
for i 6= 1, (b) since X̂T is a function of RT , Y , (c) since RT is
independent of X̂T̄ given Y , and (d) since X̂i are independent
given Y . Thus, the privacy condition summation is equal to
the given condition∑

T⊂{1,...,n}:|T |≤c

I
(
Y ; {X̂i}i/∈T |{X̂i}i∈T

)
≤ δ,

and hence the protocol is (δ, c)-private.
Theorems 3 and 4 have given both necessary conditions

and sufficient conditions for distributions that can be securely
sampled for coalitions of size c ≥ n/2. However, the exact
region has not been characterized as these conditions are not
tight. Perhaps, an appropriately defined set of conditions based
on an n-variate notion of Wyner information, such as that
proposed by [11], can fully characterize the n-party region,
and possibly exhibit a zero-one law (analogous to [1]), if the
region for c = dn/2e matches that for all c ≥ n/2. However,
this remains an open problem and is part of our ongoing work.
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